Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778257

RESUMO

Ataxia-telangiectasia mutated (ATM) drives the DNA damage response via modulation of multiple signal transduction and DNA repair pathways. Previously, ATM activity was implicated in promoting the non-homologous end joining (NHEJ) pathway to repair a subset of DNA double strand breaks (DSBs), but how ATM performs this function is still unclear. In this study, we identified that ATM phosphorylates the DNA-dependent protein kinase catalytic subunit (DNA-PK cs ), a core NHEJ factor, at its extreme C-terminus at threonine 4102 (T4102) in response to DSBs. Phosphorylation at T4102 stabilizes the interaction between DNA-PK cs and the Ku-DNA complex and promotes assembly and stabilization of the NHEJ machinery at DSBs. Ablating phosphorylation at this site results in decreased NHEJ, radiosensitivity, and increased radiation-induced genomic instability. Collectively, these findings establish a key role for ATM in NHEJ-dependent repair of DSBs through positive regulation of DNA-PK cs .

2.
EMBO J ; 42(6): e112094, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36727301

RESUMO

DNA-PKcs is a key regulator of DNA double-strand break repair. Apart from its canonical role in the DNA damage response, DNA-PKcs is involved in the cellular response to oxidative stress (OS), but its exact role remains unclear. Here, we report that DNA-PKcs-deficient human cells display depolarized mitochondria membrane potential (MMP) and reoriented metabolism, supporting a role for DNA-PKcs in oxidative phosphorylation (OXPHOS). DNA-PKcs directly interacts with mitochondria proteins ANT2 and VDAC2, and formation of the DNA-PKcs/ANT2/VDAC2 (DAV) complex supports optimal exchange of ADP and ATP across mitochondrial membranes to energize the cell via OXPHOS and to maintain MMP. Moreover, we demonstrate that the DAV complex temporarily dissociates in response to oxidative stress to attenuate ADP-ATP exchange, a rate-limiting step for OXPHOS. Finally, we found that dissociation of the DAV complex is mediated by phosphorylation of DNA-PKcs at its Thr2609 cluster by ATM kinase. Based on these findings, we propose that the coordination between the DAV complex and ATM serves as a novel oxidative stress checkpoint to decrease ROS production from mitochondrial OXPHOS and to hasten cellular recovery from OS.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ligação a DNA , Estresse Oxidativo , Humanos , Trifosfato de Adenosina/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Fosforilação
3.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35349486

RESUMO

The bromodomain and extraterminal (BET) family of chromatin reader proteins bind to acetylated histones and regulate gene expression. The development of BET inhibitors (BETi) has expanded our knowledge of BET protein function beyond transcriptional regulation and has ushered several prostate cancer (PCa) clinical trials. However, BETi as a single agent is not associated with antitumor activity in patients with castration-resistant prostate cancer (CRPC). We hypothesized novel combinatorial strategies are likely to enhance the efficacy of BETi. By using PCa patient-derived explants and xenograft models, we show that BETi treatment enhanced the efficacy of radiation therapy (RT) and overcame radioresistance. Mechanistically, BETi potentiated the activity of RT by blocking DNA repair. We also report a synergistic relationship between BETi and topoisomerase I (TOP1) inhibitors (TOP1i). We show that the BETi OTX015 synergized with the new class of synthetic noncamptothecin TOP1i, LMP400 (indotecan), to block tumor growth in aggressive CRPC xenograft models. Mechanistically, BETi potentiated the antitumor activity of TOP1i by disrupting replication fork stability. Longitudinal analysis of patient tumors indicated that TOP1 transcript abundance increased as patients progressed from hormone-sensitive prostate cancer to CRPC. TOP1 was highly expressed in metastatic CRPC, and its expression correlated with the expression of BET family genes. These studies open new avenues for the rational combinatorial treatment of aggressive PCa.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Histonas/metabolismo , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/radioterapia , Fatores de Transcrição/genética
4.
EMBO Rep ; 18(8): 1412-1428, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28615293

RESUMO

Repetitive DNA is prone to replication fork stalling, which can lead to genome instability. Here, we find that replication fork stalling at telomeres leads to the formation of t-circle-tails, a new extrachromosomal structure that consists of circular telomeric DNA with a single-stranded tail. Structurally, the t-circle-tail resembles cyclized leading or lagging replication intermediates that are excised from the genome by topoisomerase II-mediated cleavage. We also show that the DNA damage repair machinery NHEJ is required for the formation of t-circle-tails and for the resolution of stalled replication forks, suggesting that NHEJ, which is normally constitutively suppressed at telomeres, is activated in the context of replication stress. Inhibition of NHEJ or knockout of DNA-PKcs impairs telomere replication, leading to multiple-telomere sites (MTS) and telomere shortening. Collectively, our results support a "looping-out" mechanism, in which the stalled replication fork is cut out and cyclized to form t-circle-tails, and broken DNA is religated. The telomere loss induced by replication stress may serve as a new factor that drives replicative senescence and cell aging.


Assuntos
Replicação do DNA , Encurtamento do Telômero , Telômero/fisiologia , Senescência Celular , Reparo do DNA por Junção de Extremidades , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA Circular/química , DNA Circular/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Instabilidade Genômica , Humanos , Conformação de Ácido Nucleico , Telômero/genética
5.
Nucleic Acids Res ; 42(7): 4463-73, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500207

RESUMO

The ataxia telangiectasia mutated and Rad3-related (ATR)-checkpoint kinase 1 (Chk1) axis is the major signaling pathway activated in response to replication stress and is essential for the intra-S checkpoint. ATR phosphorylates and activates a number of molecules to coordinate cell cycle progression. Chk1 is the major effector downstream from ATR and plays a critical role in intra-S checkpoint on replication stress. Activation of Chk1 kinase also requires its association with Claspin, an adaptor protein essential for Chk1 protein stability, recruitment and ATR-dependent Chk1 phosphorylation. We have previously reported that, on replication stress, the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is rapidly phosphorylated by ATR at the stalled replication forks and is required for cellular resistance to replication stresses although the impact of DNA-PKcs onto the ATR signaling pathway remains elusive. Here we report that ATR-dependent Chk1 phosphorylation and Chk1 signaling are compromised in the absence of DNA-PKcs. Our investigation reveals that DNA-PKcs is required to maintain Chk1-Claspin complex stability and transcriptional regulation of Claspin expression. The impaired Chk1 activity results in a defective intra-S checkpoint response in DNA-PKcs-deficient cells. Taken together, these results suggest that DNA-PKcs, in addition to its direct role in DNA damage repair, facilitates ATR-Chk1 signaling pathway in response to replication stress.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Replicação do DNA , Proteína Quinase Ativada por DNA/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Quinases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Cromatina/metabolismo , Proteína Quinase Ativada por DNA/genética , Humanos , Mutação , Proteínas Nucleares/genética , Estabilidade Proteica , Pontos de Checagem da Fase S do Ciclo Celular , Estresse Fisiológico/genética
6.
Arterioscler Thromb Vasc Biol ; 22(1): 76-81, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11788464

RESUMO

We investigated the effect of shear stress on the sterol regulatory element-binding protein 1 (SREBP1) in vascular endothelial cells (ECs) and the mechanotransduction mechanism involved. Application of a shear stress (12 dyn/cm(2)) caused the proteolytic cleavage of SREBP1 and the ensuing translocation of its transcription factor domain into the nucleus. As a result, shear stress increased the mRNAs encoding the low density lipoprotein receptor (LDLR), as well as the binding of (125)I-LDL. Using a step flow channel, we showed that SREBP1 activation in ECs under laminar flow is transient, but disturbed flow causes sustained activation. In studying the shear stress-elicited molecular signaling that activates SREBP1, we found that blocking the beta(1)-integrin with the AIIB2 blocking-type monoclonal antibody inhibited SREBP1 activation induced by shear stress. EC attachment to fibronectin or the activation of beta(1)-integrin in the suspended ECs by the TS2/16 monoclonal antibody was sufficient for SREBP1 activation. Furthermore, transient transfection assays showed that dominant-negative mutants of focal adhesion kinase and c-Src attenuated the shear stress-increased LDLR promoter activity. These results demonstrate that integrin signaling plays a critical role in the modulation of SREBP in ECs in response to shear stress.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endotélio Vascular/metabolismo , Hemorreologia , Receptores de LDL/metabolismo , Fatores de Transcrição/metabolismo , Animais , Bovinos , Núcleo Celular/metabolismo , Células Cultivadas , Proteína-Tirosina Quinases de Adesão Focal , Proteínas Tirosina Quinases/genética , RNA Mensageiro/metabolismo , Receptores de Fibronectina/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1 , Estresse Mecânico , Transcrição Gênica , Transfecção , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...